
Another Dissertation on the sums

of the series of reciprocals arising

from the powers of the natural

numbers, in which the same

summations are derived from a

completely difference source *

Leonhard Euler

§1 After I had exhibited1 the sums of the series contained in this general
form

1 +
1
2n +

1
3n +

1
4n +

1
5n +

1
6n + etc. to infinity,

if n was a positive even number, and at the same time of these series, if n was
an odd number,

1− 1
3n +

1
5n −

1
7n +

1
9n −

1
11n + etc. to infinity

by means of the quadrature of the circle and had shown that the sum is always
expressed by the same power n of the circumference of the circle, the argument

*Original Title: “De summis serierum reciprocarum ex potestatibus numerorum naturalium
ortarum dissertatio altera, in qua eaedem summationes ex fonte maxime diverso derivan-
tur“, first published in „Miscellanea Berolinensia 7 1743, pp. 172-192“, reprinted in „Opera
Omnia: Series 1, Volume 14, pp. 138 - 155 “, Eneström-Number E61, translated by: Alexander
Aycock for the project „Euler-Kreis Mainz“

1Euler refers to his paper “De summis serierum reciprocarum“. This is paper E41 in the
Eneström-Index.
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pleased the smartest Geometers so much, that they did not only considered
it to be correct but also invested a lot of work to find the same summations
using methods familiar to them. And even I at that time was occupied a lot
trying to find another way, which would lead to the same results, not so much
to confirm the already established truth even more but rather to extend the
limits of analysis concerning series of this kind.

§2 The method which led me to the summation of these series was certainly
new and never used in an investigation of this kind; for, it was based on
the resolution of an infinite equation and one had to know all roots, whose
number was infinite, of that equation. For, I contemplated this infinite equation

x = s− s3

6
+

s5

120
− s7

5040
+

s9

362880
− etc.,

expressing the relation among the arc s of the circle and its sine x, while the
whole sine is put = 1. But since innumerable so positive as negative arcs
correspond to the same sine x, this way I had obtained innumerable roots of
this equation a posteriori; and since the coefficients of each equation depend
on the roots, from the comparison of these coefficients to the roots of the
equation I obtained to the sums of the series mentioned before.

§3 I certainly realized quickly that this method is only correct and can only
lead to true results, if it is certain that the equation of infinite degree does not
have any other roots than those, which the nature of the sine had shown me
directly. For, although I understood that no other real roots than the ones I
assigned are contained in that equation, it could justly be in doubt, whether
are roots are real; for, if the equation would also have imaginary roots, all
summations I found by this method, could not be true. And I was even more
confirmed in this doubt, after in like manner I had expressed the sine or the
corresponding ordinate of an elliptical arc by a series; for, although likewise
innumerable elliptical arcs exist which correspond to the same sine, it was
nevertheless not possible to deduce any true series from them; the reason for
this might be the many and even infinitely many imaginary roots, which enter
that equation formed from the ellipse.

§4 Therefore, since at that time I did not have a proof, that the equation
between the arc s of the circle and its sine x contains no imaginary roots, I
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started to examine whether the found sums of the series are true; and first, I
certainly immediately detected that the method yields the same sum of the
series

1− 1
3
+

1
5
− 1

7
+

1
9
− 1

11
+

1
13
− etc.

Leibniz had already given a long time ago, which convenience already showed
that, if that equation would contain imaginary roots that then their sum is
necessarily = 0. Further, I examined the series of the higher powers in this
way and compared the sums found by this method to sums, which I had
found some time before2 by approximations; and each time they agreed. And
for these reasons I was completely certain that the equation, which led me to
that sums, contained no imaginary roots; and therefore, I did not doubt that
the method only yields true sums.

§5 But I was confirmed by another purely analytical method, by means of
which I afterwards using only integration found the same sum of this series3

1 +
1
4
+

1
9
+

1
16

+
1

25
+ etc.

and in almost the same way N. Bernoulli proved the same in his paper
"Inquisitio in summam seriei 1 + 1

4 + 1
9 + 1

16 + 1
25 + 1

36 + etc."4. But although
this way the analytical calculus seemed that it could lead to all the same
sums, nevertheless neither I nor anyone else could find the sums of the higher
powers by this method. This almost made me believe that there is no other
way, which yields the sum of all powers at the same time, than the resolution
of an infinite equation.

§6 This almost forgotten doubt has recently been renewed by a letter from
Daniel Bernoulli, in which he gave the same reasons to doubt my method and
also mentioned that Cramer shares the same doubts concerning my method.
Therefore, these friendly remarks made me reconsider the whole subject and
made me work very hard both to prove the validity of my method and to find

2Euler refers to his paper “Inventio summae cuiusque seriei ex dato termino generali“. This
is paper E47 in the Eneström-Index.

3Euler refers to his paper “Demonstration de la somme de cette suite 1 + 1
4 + 1

9 + 1
16 + · · · “.

This is E63 in the Eneström-Index.
4This was published in Tomo X. Comment. acad. sc. Petrop. 10 (1738), 1747, p. 19-21.
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a new way to sum these series. Therefore, now possessing the tools to do so
I will solve these two tasks in this dissertation. At first I will prove that no
imaginary roots are contained in the infinite equation mentioned above and
hence the summations deduced from it are then seen to be true. Secondly, I
will give new method, not only very different from the first but also opening
the way to many other interesting results, which solves the whole problem
only by integrations.

§7 I obtained the proof promised first from the resolution of this binomial

an + bn

into its real factors. For, each single factor of this binomial is contained in this
form

aa− 2ab cos A
(2k− 1)π

n
+ bb

and all its factors are obtained, if successively all odd numbers smaller than
the exponent n are substituted for 2k− 1; and if n was an odd number, then,
except for these trinomial factors, the simple factor a + b must be added. If it
has the remainder

an− bn,

at first a− b is a simple factor of it, the remaining real trinomial factors are
contained in this form

aa− 2ab cos A
2kπ

n
+ bb

and all factors of this kind are obtained, if successively all even numbers
(except for zero) smaller than the exponent n are substituted for 2k; and if
n was an even number, one furthermore has to add the simple factor a + b.
Therefore, this way completely all real factors of the formula

an± bn

can be exhibited; and the product of all of them will vice versa give this
formula again. Additionally, it is to be noted here that π denotes the half of
the circumference of the circle, whose radius = 1, or π is the angle equal to
two right angles.
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§8 Hence we are now already able to assign all roots of factors of this infinite
expression a priori

s− s3

1 · 2 · 3 +
s3

1 · 2 · 3 · 4 · 5 −
s7

1 · 2 · 3 · · · 7 +
s9

1 · 2 · 3 · · · 9 − etc.

For, this expression is equivalent to this one

es
√
−1 + e−s

√
−1

2
√
−1

,

where e denotes the number, whose logarithm = 1, and since it is

ez =

(
1 +

z
n

)n

,

while n is an infinite number, the propounded infinite expression will be
reduced to this one (

1 + s
√
−1

n

)n
−
(

1− s
√
−1

n

)n

2
√
−1

,

whose first simple factor is s, which is certainly seen immediately by inspecting
the series. In order to find the remaining factors I compare this expression to
this form an− bn; it will be

a = 1 +
s
√
−1

n
and b = 1− s

√
−1

n

and hence

aa + bb = 2− 2ss
nn

and 2ab = 2 +
2ss
nn

.

Therefore, each factor will be contained in this form

2− 2ss
nn
− 2

(
1 +

ss
nn

)
cos A

2kπ

n

and hence completely all factors will emerge, if successively all even numbers
to infinity are substituted for 2k, since n denotes an infinite number here.
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§9 But since n is an infinite number, the arc 2kπ
n will be infinitely small until

2k also becomes an infinite number, but still smaller than n. Therefore, it will
be

cos A
2kπ

n
= 1− 2kkππ

nn
,

whence the general factor goes over into this form

−4ss
nn

+
4kkππ

nn
,

from which, having reduced the known term to 1, this factor results

1− ss
kkππ

,

which, having successively substituted all numbers 1, 2, 3 etc. to infinity for k,
yields all factors. But if k becomes infinite in such a way that 2k has a finite
ratio to n, then because of

cos A
2kπ

n
< 1

the terms ss
nn are not small compared to 1 and the factor 1− cos A 2kπ

n will
become constant and hence does not enter the calculation, since it does not
contain the arc s.

§10 This way we obtained all factors of the propounded formula

s− s3

1 · 2 · 3 +
s5

1 · 2 · 3 · 4 · 5 −
s7

1 · 2 · 3 · · · 7 + etc.,

which will therefore exactly equal to the product consisting of all these
infinitely many factors

s
(

1− ss
ππ

)(
1− ss

4ππ

)(
1− ss

9ππ

)(
1− ss

16ππ

)
etc.,

and having compared them to the coefficients of the terms of the series the
sums of the series

1 +
1

2m +
1

3m +
1

4m +
1

5m +
1

6m + etc.

follow immediately, if m denotes an arbitrary even number; and hence their
truth is no longer in any doubt.
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§11 If in like manner we consider this series

1− ss
1 · 2 +

s4

1 · 2 · 3 · 4 −
s6

1 · 2 · 3 · · · 6 +
s8

1 · 2 · 3 · · · 8 − etc.,

it will be reduced to this form(
1 + s

√
−1

n

)n
+
(

1− s
√
−1

n

)n

2
,

while n denotes an infinite number. Therefore, the divisors of the binomial(
1 +

s
√
−1

n

)n

+

(
1− s

√
−1

n

)n

will at the same time be all the divisors of the propounded formula. Having
compared this form to an + bn it will be

a = 1+
s
√
−1

n
, b = 1− s

√
−1

n
, aa+ bb = 2− 2ss

nn
and 2ab = 2+

2ss
nn

;

therefore, each divisor of the propounded formula is contained in this expres-
sion

2
(

1− ss
nn

)
− 2

(
1 +

ss
nn

)
cos A

(2k− 1)π

n

or in this one

2
(

1− cos A
(2k− 1)π

n

)
− 2ss

nn

(
1 + cos A

(2k− 1)π

n

)
.

But since in the divisor only the unknown is considered, an arbitrary divisor
will be

1−
ss
(

1 + cos A (2k−1)π
n

)
nn
(

1− cos A (2k−1)π
n

) ,

having put the known term equal to 1, since in the series the first term is = 1.
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§12 But because of the infinite number n it will be

1 + cos A
(2k− 1)π

n
= 2 and 1− cos A

(2k− 1)π

n
=

(2k− 1)2ππ

2nn
,

from which each arbitrary divisor will be

1− 2ss
(2k− 1)2ππ

;

and if successively all odd numbers to infinity are substituted for 2k− 1, all
divisors of the propounded series

1− ss
1 · 2 +

s4

1 · 2 · 3 · 4 −
s6

1 · 2 · · · 6 + etc.

will result, which will therefore be equal to this infinite product(
1− 4ss

ππ

)(
1− 4ss

9ππ

)(
1− 4ss

25ππ

)(
1− 4ss

49ππ

)
etc.,

and having compared it to the series all series of the powers are summed as
before. And hence it is proved that those infinite equations, which I treated at
that time, do not have any other roots than those, which I obtained from the
nature of the sine and cosine a posteriori.

§13 Having demonstrated the validity of the method, I used before to assign
these series, I proceed to explain another method which is completely different
from the first one and which being derived only from the principles of integral
calculus gives the sums of the same series in a remarkably easy and straight-
forward manner. But this method is based on two theorems I proved in the
dissertation "De inventione integralium, si quantitati variabli post integrationem
definitus valor tribuator"5, from which I state them here without a proof.

"The integral of the differential formula

xp−1 + xq−p−q

1 + xq dx,

taken in such a way that it vanishes having put x = 0, if after the integration
one puts x = 1, will give this value

5This is paper E60 in the Eneström-Index.
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π

q sin A pπ
q

,

while π denotes the circumference of the circle, whose radius is = 1, in which
circle I put that at the same time the arc pπ

q is taken."

The other theorem similar to this one is:

The integral of the differential formula

xp−1− xq−p−1

1− xq dx

taken in such way that it vanishes having put x = 0, if after the integration in
it one puts x = 1, will give this value

π cos A pπ
q

q sin A pπ
q

or
π

q tan A pπ
q

.”

The proofs of these theorems are very straight-forward; for, first I investigated
the integrals in general according to the usual rules and after having found
them I put 1 for the variable x. After this I got to an even finite series of
sines, which, since the arcs proceeded in an arithmetic progression, admitted
a summation and yielded these expressions.

§14 Now let us take the first integral formula∫ xp−1 + xq−p−q

1 + xq dx,

which having resolved it into a series will give two geometric progressions

∫
dx(xp−1− xq+p−1 + x2q+p−1− x3q+p−1 + etc.)

+
∫

dx(xq−p−1− x2q−p−1 + x3q−p−1− x4q−p−1 + etc.).

Therefore, its integral taken in such a way that it vanishes having put x = 0
will be expressed this way by a series
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xp

p
+

xq−p

q− p
− xq+p

q + p
− x2q−p

2q− p
+

x2q+p

2q + p
+

x3q−p

3q− p
− etc.

If we set x = 1 now, by means of the first theorem the sum of this series

1
p
+

1
q + p

− 1
q + p

− 1
2q− p

+
1

2q + p
+

1
3q− p

− 1
3q + p

− 1
4q− p

+ etc.

will be
=

π

q sin A pπ
q

.

§15 In like manner the other integral formula∫ xp−1− xq−p−1

1− xq dx

having integrated it using the series will give

xp

p
− xq−p

q− p
+

xq+p

q + p
− x2q−p

2q− p
+

x2q+p

2q + p
− x3q−p

3q− p
+ etc.

Therefore, by means of the other theorem, if we put x = 1, the sum of this
series

1
p
− 1

q− p
+

1
q + p

− 1
2q− p

+
1

2q + p
− 1

3q− p
+

1
3q− p

− etc.

will be

=
π cos A pπ

q

q sin A pπ
q

,

as long as p and q were positive numbers and q > p, what must always be
assumed in the following; for, otherwise the integral taken in this way would
not vanish for x = 0.

§16 Let p
q = s; and having multiplied the found series by q we will have

these two series reduced to finite forms

π

sin Asπ
=

1
s
+

1
1− s

− 1
1 + s

− 1
2− s

+
1

2 + s
+

1
3− s

− 1
3 + s

− etc.,

π cos Asπ

sin Asπ
=

1
s
− 1

1− s
+

1
1 + s

− 1
2− s

+
1

2 + s
− 1

3− s
+

1
3 + s

− etc.
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and the sums of these series will be true, whatever number is indicated by
s, might it be rational or irrational, and this way the law of continuity is no
longer violated as before, when we had to assume integer numbers for p
and q. Yes, these sums are even true, if numbers greater than 1 are taken for
s. For, if it is s = 1 or s is an arbitrary integer, then the series will become
infinite because of the one respective infinite term in the series, but at the
same time the exhibited sums will also grow to infinity, since the denominator
is sin Asπ = 0. Hence these sums extend so far that they do not require any
restriction.

§17 From these series one now deduces the series for the quadrature of
the circle, given both by Leibniz and Gregory, and innumerable others, the
principal ones of which I will list up here.

Let q = 2 and p = 1; it will be

sin A
π

2
= 1 and cos A

π

2
= 0

and hence the following series arise

π

2
= 1 + 1 − 1

3
− 1

3
+

1
5
+

1
5
− 1

7
− 1

7
+ etc.

or

π

4
= 1− 1

3
+

1
5
− 1

7
+

1
9
− 1

11
+ etc.

and

0π

2
= 1 − 1 +

1
3
− 1

3
+

1
5
− 1

5
+

1
7
− 1

7
+ etc.;

the second of them is the Leibniz series, but the last is immediately clear.

Let q = 3 and p = 1; it will be

sin A
π

3
and cos A

π

3
=

1
2

,

whence the following series result
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2π

3
√

3
= 1 +

1
2
− 1

4
− 1

5
+

1
7
+

1
8
− 1

10
− 1

11
+

1
13

+ etc.,

π

3
√

3
= 1− 1

2
+

1
4
− 1

5
+

1
7
− 1

8
+

1
10
− 1

11
+

1
13
− etc.

Let q = 4 and p = 1; it will be

sin A
π

4
=

1√
2

and cos A
π

4
=

1√
2

and hence the following series result

π

2
√

2
= 1+

1
3
−1

5
−1

7
+

1
9
+

1
11
− 1

13
−etc.,

π

4
= 1−1

3
+

1
5
−1

7
+

1
9
− 1

11
+

1
13
−etc.,

Let q = 6 and p = 1; it will be

sin A
π

6
=

1
2

and cos A
π

6
=

√
3

2
,

whence the following series arise

π

3
= 1 +

1
5
− 1

7
− 1

11
+

1
13

+
1
17
− 1

19
− 1

23
+ etc.,

π

2
√

3
= 1− 1

5
+

1
7
− 1

11
+

1
13
− 1

17
+

1
19
− 1

23
+ etc.

And all these series were also found by the first method.

§18 Therefore, since we have seen that the sum of this series

1
s
+

1
1− s

− 1
1 + s

− 1
2− s

+
1

2 + s
+

1
3− s

− etc.

is

=
π

sin Aπs
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and the sum of this one

1
s
− 1

1− s
+

1
1 + s

− 1
2− s

+
1

2 + s
− 1

3− s
+ etc.

is

=
π cos Aπs

sin Aπs
,

whatever value is attributed to the letter s, it is obvious that the same equalities
hold, if s + ds is put instead of s, or, what reduces to the same, if those series
and sums are differentiated with respect to s. Hence, because it is

d sin Aπs = πds cos Aπs and d cos Aπs = −πds sin Aπs,

ππ cos Aπs
(sin Aπs)2 =

1
ss
− 1

(1− s)2 −
1

(1 + s)2 +
1

(2− s)2 +
1

(2 + s)2 −
1

(3− s)2 − etc.,

ππ

(sin Aπs)2 =
1
ss

+
1

(1− s)2 +
1

(1 + s)2 +
1

(2− s)2 +
1

(2 + s)2 +
1

(3− s)2 + etc.

Therefore, if p
q is substituted for s again and both sides are divided by qq, the

following summed series will result

ππ cos A pπ
q

qq
(

sin A pπ
q

)2 =
1

pp
− 1

(q− p)2 −
1

(q + p)2 +
1

(2q− p)2 +
1

(2q + p)2 − etc.,

ππ

qq
(

sin A pπ
q

)2 =
1

pp
+

1
(q− p)2 +

1
(q + p)2 +

1
(2q− p)2 +

1
(2q + p)2 + etc.

§19 Let us put that it is q = 2 and p = 1; it will be sin A π
2 = 1 and

cos A π
2 = 0; hence the following series will result

0 = 1− 1− 1
32 +

1
32 +

1
52 −

1
52 −

1
72 + etc.

ππ

4
= 1 + 1 +

1
32 +

1
32 +

1
52 +

1
52 +

1
72 + etc.;
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the first of them is obviously true, the second on the other hand reduces to
this one

ππ

8
= 1 +

1
32 +

1
52 +

1
72 +

1
92 +

1
112 + etc.

Let q = 3 and p = 1; it will be sin A π
3 =

√
3

2 and cos A π
3 = 1

2 , whence these
two series will result

2ππ

27
= 1− 1

22 −
1
42 +

1
52 +

1
72 −

1
82 −

1
102 + etc.,

4ππ

27
= 1 +

1
22 +

1
42 +

1
52 +

1
72 +

1
82 +

1
102 + etc.

Let q = 4 and p = 1; it will be sin A π
4 = 1√

2
and cos A π

4 = 1√
2
, and hence

these two series will result

ππ

8
√

2
= 1− 1

32 −
1
52 +

1
72 +

1
92 −

1
112 −

1
132 + etc.,

ππ

8
= 1 +

1
32 +

1
52 +

1
72 +

1
92 +

1
112 +

1
132 + etc.

Let q = 6 and p = 1; it will be sin A π
6 = 1

2 and cos A π
6 =

√
3

2 , in which case
these series will be obtained:

ππ

6
√

3
= 1− 1

52 −
1
72 +

1
112 +

1
132 −

1
172 −

1
192 + etc.,

ππ

9
= 1 +

1
52 +

1
72 +

1
112 +

1
132 +

1
172 +

1
192 + etc.

And from these series those two principal ones, which I found by means of
the preceding method in this class, are easily derived

ππ

6
= 1 +

1
22 +

1
32 +

1
42 +

1
52 +

1
62 + etc.,

ππ

12
= 1− 1

22 +
1
32 −

1
42 +

1
52 −

1
62 + etc.
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§20 In order to find the sums of the higher powers by means of continued dif-
ferentiation more easily, let us differentiate the sums and the series separately.
Therefore, let

π

sin Aπs
= P and

π cos Aπs
sin As

= Q

and we will have the following summations expressed in terms of the diffe-
rentials of the respective order of P and Q

+ P =
1
s

+
1

1− s
− 1

1 + s
− 1

2− s
+

1
2 + s

+
1

3− s
− etc.,

+ Q =
1
s
− 1

1− s
+

1
1 + s

− 1
2− s

+
1

2 + s
− 1

3− s
+ etc.,

−dP
1ds

=
1
ss
− 1

(1− s)2 −
1

(1 + s)2 +
1

(2− s)2 +
1

(2 + s)2 −
1

(3− s)2 − etc.,

−dQ
1ds

=
1
ss

+
1

(1− s)2 +
1

(1 + s)2 +
1

(2− s)2 +
1

(2 + s)2 +
1

(3− s)2 + etc.,

−ddP
1 · 2ds2 =

1
s3 +

1
(1− s)3 −

1
(1 + s)3 −

1
(2− s)3 +

1
(2 + s)3 +

1
(3− s)3 − etc.,

−ddQ
1 · 2ds2 =

1
s3 −

1
(1− s)3 +

1
(1 + s)3 −

1
(2− s)3 +

1
(2 + s)3 −

1
(3− s)3 + etc.,

−d3P
1 · 2 · 3ds3 =

1
s4 −

1
(1− s)4 −

1
(1 + s)4 +

1
(2− s)4 +

1
(2 + s)4 −

1
(3− s)4 − etc.,

−d3Q
1 · 2 · 3ds3 =

1
s4 +

1
(1− s)4 +

1
(1 + s)4 +

1
(2− s)4 +

1
(2 + s)4 +

1
(3− s)4 + etc.

Therefore, in general one will have this summation

±dn−1P
1 · 2 · 3 · · · (n− 1)dsn−1 =

1
sn ±

1
(1− s)n −

1
(1 + s)n ∓

1
(2− s)n +

1
(2 + s)n ±

1
(3− s)n − etc.,

±dn−1Q
1 · 2 · 3 · · · (n− 1)dsn−1 =

1
sn ∓

1
(1− s)n +

1
(1 + s)n ∓

1
(2− s)n +

1
(2 + s)n ∓

1
(3− s)n + etc.,

where the upper signs hold, if n was an odd number, the lower on the other
hand, if n is an even number.
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§21 To actually determine these sums it is necessary that we find the dif-
ferentials of each order of the quantities P and Q; in order to do this more
easily and succinctly, let us put

sin Aπs = x and cos Aπs = y

and it will be

P =
π

x
and Q =

πy
x

.

But further it will be

dx = πyds and dy = −πxds,

whence by the rules of differentiation the following values are obtained

+ P =
π

x
,

− dP
ds

=
π2

x2 · y

+
ddP
ds2 =

π3

x3 (y2 + 1),

− d3P
ds3 =

π4

x4 (y3 + 5y),

+
d4P
ds4 =

π5

x5 (y4 + 18y2 + 5),

− d5P
ds5 =

π6

x6 (y5 + 58y3 + 61y),

+
d6P
ds6 =

π7

x7 (y6 + 179y4 + 479y2 + 61),

− d7P
ds7 =

π8

x8

(
+6 · 1 +4 · 179 +2 · 479

y7 y5 y3 y
+3 · 179 +5 · 479 +7 · 61

)
etc.,

from the last of these expressions at the same time the law is clear, by means
of which one can form each differential from the preceding one. And hence
the sum of this series

1
sn ±

1
(1− s)n −

1
(1 + s)n ∓

1
(2− s)n +

1
(2 + s)n ±

1
(3− s)n − etc.

will be assigned for each value of the exponent n.
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§22 In like manner the values of the differentials of arbitrary order of the
quantity Q will be found and it will be

+ Q =
π

x
· y,

− dQ
ds

=
π2

x2 · 1

+
ddP
ds2 =

π3

x3 · 2y,

− d3Q
ds3 =

π4

x4 (4yy + 2),

+
d4Q
ds4 =

π5

x5 (8y3 + 16y),

− d5Q
ds5 =

π6

x6 (16y4 + 88y2 + 16),

+
d6Q
ds6 =

π7

x7 (32y5 + 416y3 + 272y),

− d6Q
ds6 =

π8

x8 (64y6 + 1824y4 + 2880y2 + 272),

+
d8P
ds8 =

π9

x9

(
+4 · 1824 +6 · 2880 +8 · 272

2 · 64y7 y5 y3 y
+6 · 64 +4 · 1824 +2 · 2880

)
etc.,

The structure of the progression, by means of which one can continue these
expressions arbitrarily far, is equally obvious here; and hence one will be able
to exhibit the sum of the powers of each series, which is contained in this form

1
sn ∓

1
(1− s)n +

1
(1 + s)n ∓

1
(2− s)n +

1
(2 + s)n ∓

1
(3− s)n + etc.

But not only all series, which the preceding method gave, are contained in
these series, but also additionally innumerable others. Yes, it seems that this
method is appropriate to find even many other most interesting results.
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